Database
GRAPH THEORY
Undirected graphs
Vertex degree
usgrvd00
Metamath Proof Explorer
Description: If every vertex in a simple graph has degree 0, there is no edge in the
graph. (Contributed by Alexander van der Vekens , 12-Jul-2018)
(Revised by AV , 17-Dec-2020) (Proof shortened by AV , 23-Dec-2020)
Ref
Expression
Hypotheses
vtxdusgradjvtx.v
⊢ V = Vtx ⁡ G
vtxdusgradjvtx.e
⊢ E = Edg ⁡ G
Assertion
usgrvd00
⊢ G ∈ USGraph → ∀ v ∈ V VtxDeg ⁡ G ⁡ v = 0 → E = ∅
Proof
Step
Hyp
Ref
Expression
1
vtxdusgradjvtx.v
⊢ V = Vtx ⁡ G
2
vtxdusgradjvtx.e
⊢ E = Edg ⁡ G
3
usgruhgr
⊢ G ∈ USGraph → G ∈ UHGraph
4
1 2
uhgrvd00
⊢ G ∈ UHGraph → ∀ v ∈ V VtxDeg ⁡ G ⁡ v = 0 → E = ∅
5
3 4
syl
⊢ G ∈ USGraph → ∀ v ∈ V VtxDeg ⁡ G ⁡ v = 0 → E = ∅