Metamath Proof Explorer


Theorem usgrvd00

Description: If every vertex in a simple graph has degree 0, there is no edge in the graph. (Contributed by Alexander van der Vekens, 12-Jul-2018) (Revised by AV, 17-Dec-2020) (Proof shortened by AV, 23-Dec-2020)

Ref Expression
Hypotheses vtxdusgradjvtx.v V = Vtx G
vtxdusgradjvtx.e E = Edg G
Assertion usgrvd00 G USGraph v V VtxDeg G v = 0 E =

Proof

Step Hyp Ref Expression
1 vtxdusgradjvtx.v V = Vtx G
2 vtxdusgradjvtx.e E = Edg G
3 usgruhgr G USGraph G UHGraph
4 1 2 uhgrvd00 G UHGraph v V VtxDeg G v = 0 E =
5 3 4 syl G USGraph v V VtxDeg G v = 0 E =