Metamath Proof Explorer


Theorem ushgredgedg

Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges containing a fixed vertex and the set of edges containing this vertex. (Contributed by AV, 11-Dec-2020)

Ref Expression
Hypotheses ushgredgedg.e E = Edg G
ushgredgedg.i I = iEdg G
ushgredgedg.v V = Vtx G
ushgredgedg.a A = i dom I | N I i
ushgredgedg.b B = e E | N e
ushgredgedg.f F = x A I x
Assertion ushgredgedg G USHGraph N V F : A 1-1 onto B

Proof

Step Hyp Ref Expression
1 ushgredgedg.e E = Edg G
2 ushgredgedg.i I = iEdg G
3 ushgredgedg.v V = Vtx G
4 ushgredgedg.a A = i dom I | N I i
5 ushgredgedg.b B = e E | N e
6 ushgredgedg.f F = x A I x
7 eqid Vtx G = Vtx G
8 7 2 ushgrf G USHGraph I : dom I 1-1 𝒫 Vtx G
9 8 adantr G USHGraph N V I : dom I 1-1 𝒫 Vtx G
10 ssrab2 i dom I | N I i dom I
11 f1ores I : dom I 1-1 𝒫 Vtx G i dom I | N I i dom I I i dom I | N I i : i dom I | N I i 1-1 onto I i dom I | N I i
12 9 10 11 sylancl G USHGraph N V I i dom I | N I i : i dom I | N I i 1-1 onto I i dom I | N I i
13 4 a1i G USHGraph N V A = i dom I | N I i
14 eqidd G USHGraph N V x A I x = I x
15 13 14 mpteq12dva G USHGraph N V x A I x = x i dom I | N I i I x
16 6 15 syl5eq G USHGraph N V F = x i dom I | N I i I x
17 f1f I : dom I 1-1 𝒫 Vtx G I : dom I 𝒫 Vtx G
18 8 17 syl G USHGraph I : dom I 𝒫 Vtx G
19 10 a1i G USHGraph i dom I | N I i dom I
20 18 19 feqresmpt G USHGraph I i dom I | N I i = x i dom I | N I i I x
21 20 adantr G USHGraph N V I i dom I | N I i = x i dom I | N I i I x
22 21 eqcomd G USHGraph N V x i dom I | N I i I x = I i dom I | N I i
23 16 22 eqtrd G USHGraph N V F = I i dom I | N I i
24 ushgruhgr G USHGraph G UHGraph
25 eqid iEdg G = iEdg G
26 25 uhgrfun G UHGraph Fun iEdg G
27 24 26 syl G USHGraph Fun iEdg G
28 2 funeqi Fun I Fun iEdg G
29 27 28 sylibr G USHGraph Fun I
30 29 adantr G USHGraph N V Fun I
31 dfimafn Fun I i dom I | N I i dom I I i dom I | N I i = e | j i dom I | N I i I j = e
32 30 10 31 sylancl G USHGraph N V I i dom I | N I i = e | j i dom I | N I i I j = e
33 fveq2 i = j I i = I j
34 33 eleq2d i = j N I i N I j
35 34 elrab j i dom I | N I i j dom I N I j
36 simpl j dom I N I j j dom I
37 fvelrn Fun I j dom I I j ran I
38 2 eqcomi iEdg G = I
39 38 rneqi ran iEdg G = ran I
40 39 eleq2i I j ran iEdg G I j ran I
41 37 40 sylibr Fun I j dom I I j ran iEdg G
42 30 36 41 syl2an G USHGraph N V j dom I N I j I j ran iEdg G
43 42 3adant3 G USHGraph N V j dom I N I j I j = f I j ran iEdg G
44 eleq1 f = I j f ran iEdg G I j ran iEdg G
45 44 eqcoms I j = f f ran iEdg G I j ran iEdg G
46 45 3ad2ant3 G USHGraph N V j dom I N I j I j = f f ran iEdg G I j ran iEdg G
47 43 46 mpbird G USHGraph N V j dom I N I j I j = f f ran iEdg G
48 edgval Edg G = ran iEdg G
49 48 a1i G USHGraph Edg G = ran iEdg G
50 1 49 syl5eq G USHGraph E = ran iEdg G
51 50 eleq2d G USHGraph f E f ran iEdg G
52 51 adantr G USHGraph N V f E f ran iEdg G
53 52 3ad2ant1 G USHGraph N V j dom I N I j I j = f f E f ran iEdg G
54 47 53 mpbird G USHGraph N V j dom I N I j I j = f f E
55 eleq2 I j = f N I j N f
56 55 biimpcd N I j I j = f N f
57 56 adantl j dom I N I j I j = f N f
58 57 a1i G USHGraph N V j dom I N I j I j = f N f
59 58 3imp G USHGraph N V j dom I N I j I j = f N f
60 54 59 jca G USHGraph N V j dom I N I j I j = f f E N f
61 60 3exp G USHGraph N V j dom I N I j I j = f f E N f
62 35 61 syl5bi G USHGraph N V j i dom I | N I i I j = f f E N f
63 62 rexlimdv G USHGraph N V j i dom I | N I i I j = f f E N f
64 27 funfnd G USHGraph iEdg G Fn dom iEdg G
65 fvelrnb iEdg G Fn dom iEdg G f ran iEdg G j dom iEdg G iEdg G j = f
66 64 65 syl G USHGraph f ran iEdg G j dom iEdg G iEdg G j = f
67 38 dmeqi dom iEdg G = dom I
68 67 eleq2i j dom iEdg G j dom I
69 68 biimpi j dom iEdg G j dom I
70 69 adantr j dom iEdg G iEdg G j = f j dom I
71 70 adantl G USHGraph N f j dom iEdg G iEdg G j = f j dom I
72 38 fveq1i iEdg G j = I j
73 72 eqeq2i f = iEdg G j f = I j
74 73 biimpi f = iEdg G j f = I j
75 74 eqcoms iEdg G j = f f = I j
76 75 eleq2d iEdg G j = f N f N I j
77 76 biimpcd N f iEdg G j = f N I j
78 77 adantl G USHGraph N f iEdg G j = f N I j
79 78 adantld G USHGraph N f j dom iEdg G iEdg G j = f N I j
80 79 imp G USHGraph N f j dom iEdg G iEdg G j = f N I j
81 71 80 jca G USHGraph N f j dom iEdg G iEdg G j = f j dom I N I j
82 81 35 sylibr G USHGraph N f j dom iEdg G iEdg G j = f j i dom I | N I i
83 72 eqeq1i iEdg G j = f I j = f
84 83 biimpi iEdg G j = f I j = f
85 84 adantl j dom iEdg G iEdg G j = f I j = f
86 85 adantl G USHGraph N f j dom iEdg G iEdg G j = f I j = f
87 82 86 jca G USHGraph N f j dom iEdg G iEdg G j = f j i dom I | N I i I j = f
88 87 ex G USHGraph N f j dom iEdg G iEdg G j = f j i dom I | N I i I j = f
89 88 reximdv2 G USHGraph N f j dom iEdg G iEdg G j = f j i dom I | N I i I j = f
90 89 ex G USHGraph N f j dom iEdg G iEdg G j = f j i dom I | N I i I j = f
91 90 com23 G USHGraph j dom iEdg G iEdg G j = f N f j i dom I | N I i I j = f
92 66 91 sylbid G USHGraph f ran iEdg G N f j i dom I | N I i I j = f
93 51 92 sylbid G USHGraph f E N f j i dom I | N I i I j = f
94 93 impd G USHGraph f E N f j i dom I | N I i I j = f
95 94 adantr G USHGraph N V f E N f j i dom I | N I i I j = f
96 63 95 impbid G USHGraph N V j i dom I | N I i I j = f f E N f
97 vex f V
98 eqeq2 e = f I j = e I j = f
99 98 rexbidv e = f j i dom I | N I i I j = e j i dom I | N I i I j = f
100 97 99 elab f e | j i dom I | N I i I j = e j i dom I | N I i I j = f
101 eleq2 e = f N e N f
102 101 5 elrab2 f B f E N f
103 96 100 102 3bitr4g G USHGraph N V f e | j i dom I | N I i I j = e f B
104 103 eqrdv G USHGraph N V e | j i dom I | N I i I j = e = B
105 32 104 eqtrd G USHGraph N V I i dom I | N I i = B
106 105 eqcomd G USHGraph N V B = I i dom I | N I i
107 23 13 106 f1oeq123d G USHGraph N V F : A 1-1 onto B I i dom I | N I i : i dom I | N I i 1-1 onto I i dom I | N I i
108 12 107 mpbird G USHGraph N V F : A 1-1 onto B