Metamath Proof Explorer


Theorem ushgrf

Description: The edge function of an undirected simple hypergraph is a one-to-one function into the power set of the set of vertices. (Contributed by AV, 9-Oct-2020)

Ref Expression
Hypotheses uhgrf.v V = Vtx G
uhgrf.e E = iEdg G
Assertion ushgrf G USHGraph E : dom E 1-1 𝒫 V

Proof

Step Hyp Ref Expression
1 uhgrf.v V = Vtx G
2 uhgrf.e E = iEdg G
3 1 2 isushgr G USHGraph G USHGraph E : dom E 1-1 𝒫 V
4 3 ibi G USHGraph E : dom E 1-1 𝒫 V