Metamath Proof Explorer


Theorem ushgruhgr

Description: An undirected simple hypergraph is an undirected hypergraph. (Contributed by AV, 19-Jan-2020) (Revised by AV, 9-Oct-2020)

Ref Expression
Assertion ushgruhgr G USHGraph G UHGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 ushgrf G USHGraph iEdg G : dom iEdg G 1-1 𝒫 Vtx G
4 f1f iEdg G : dom iEdg G 1-1 𝒫 Vtx G iEdg G : dom iEdg G 𝒫 Vtx G
5 3 4 syl G USHGraph iEdg G : dom iEdg G 𝒫 Vtx G
6 1 2 isuhgr G USHGraph G UHGraph iEdg G : dom iEdg G 𝒫 Vtx G
7 5 6 mpbird G USHGraph G UHGraph