Metamath Proof Explorer


Theorem ushgrun

Description: The union U of two (undirected) simple hypergraphs G and H with the same vertex set V is a (not necessarily simple) hypergraph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 29-Nov-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses ushgrun.g φ G USHGraph
ushgrun.h φ H USHGraph
ushgrun.e E = iEdg G
ushgrun.f F = iEdg H
ushgrun.vg V = Vtx G
ushgrun.vh φ Vtx H = V
ushgrun.i φ dom E dom F =
ushgrun.u φ U W
ushgrun.v φ Vtx U = V
ushgrun.un φ iEdg U = E F
Assertion ushgrun φ U UHGraph

Proof

Step Hyp Ref Expression
1 ushgrun.g φ G USHGraph
2 ushgrun.h φ H USHGraph
3 ushgrun.e E = iEdg G
4 ushgrun.f F = iEdg H
5 ushgrun.vg V = Vtx G
6 ushgrun.vh φ Vtx H = V
7 ushgrun.i φ dom E dom F =
8 ushgrun.u φ U W
9 ushgrun.v φ Vtx U = V
10 ushgrun.un φ iEdg U = E F
11 ushgruhgr G USHGraph G UHGraph
12 1 11 syl φ G UHGraph
13 ushgruhgr H USHGraph H UHGraph
14 2 13 syl φ H UHGraph
15 12 14 3 4 5 6 7 8 9 10 uhgrun φ U UHGraph