Metamath Proof Explorer


Theorem uspgr1ewop

Description: A simple pseudograph with (at least) two vertices and one edge represented by a singleton word. (Contributed by AV, 9-Jan-2021)

Ref Expression
Assertion uspgr1ewop V W A V B V V ⟨“ A B ”⟩ USHGraph

Proof

Step Hyp Ref Expression
1 prex A B V
2 s1val A B V ⟨“ A B ”⟩ = 0 A B
3 1 2 mp1i V W A V B V ⟨“ A B ”⟩ = 0 A B
4 3 opeq2d V W A V B V V ⟨“ A B ”⟩ = V 0 A B
5 simp1 V W A V B V V W
6 c0ex 0 V
7 6 a1i V W A V B V 0 V
8 3simpc V W A V B V A V B V
9 uspgr1eop V W 0 V A V B V V 0 A B USHGraph
10 5 7 8 9 syl21anc V W A V B V V 0 A B USHGraph
11 4 10 eqeltrd V W A V B V V ⟨“ A B ”⟩ USHGraph