Metamath Proof Explorer


Theorem uspgr1v1eop

Description: A simple pseudograph with (at least) one vertex and one edge (a loop). (Contributed by AV, 5-Dec-2020)

Ref Expression
Assertion uspgr1v1eop V W A X B V V A B USHGraph

Proof

Step Hyp Ref Expression
1 dfsn2 B = B B
2 1 opeq2i A B = A B B
3 2 sneqi A B = A B B
4 3 opeq2i V A B = V A B B
5 3simpa V W A X B V V W A X
6 id B V B V
7 6 ancri B V B V B V
8 7 3ad2ant3 V W A X B V B V B V
9 uspgr1eop V W A X B V B V V A B B USHGraph
10 5 8 9 syl2anc V W A X B V V A B B USHGraph
11 4 10 eqeltrid V W A X B V V A B USHGraph