Metamath Proof Explorer


Theorem uspgredgiedg

Description: In a simple pseudograph, for each edge there is exactly one indexed edge. (Contributed by AV, 20-Apr-2025)

Ref Expression
Hypotheses uspgredgiedg.e E = Edg G
uspgredgiedg.i I = iEdg G
Assertion uspgredgiedg G USHGraph K E ∃! x dom I K = I x

Proof

Step Hyp Ref Expression
1 uspgredgiedg.e E = Edg G
2 uspgredgiedg.i I = iEdg G
3 2 uspgrf1oedg G USHGraph I : dom I 1-1 onto Edg G
4 f1oeq3 E = Edg G I : dom I 1-1 onto E I : dom I 1-1 onto Edg G
5 1 4 ax-mp I : dom I 1-1 onto E I : dom I 1-1 onto Edg G
6 3 5 sylibr G USHGraph I : dom I 1-1 onto E
7 f1ofveu I : dom I 1-1 onto E K E ∃! x dom I I x = K
8 6 7 sylan G USHGraph K E ∃! x dom I I x = K
9 eqcom K = I x I x = K
10 9 reubii ∃! x dom I K = I x ∃! x dom I I x = K
11 8 10 sylibr G USHGraph K E ∃! x dom I K = I x