Metamath Proof Explorer


Theorem uspgriedgedg

Description: In a simple pseudograph, for each indexed edge there is exactly one edge. (Contributed by AV, 20-Apr-2025)

Ref Expression
Hypotheses uspgredgiedg.e E = Edg G
uspgredgiedg.i I = iEdg G
Assertion uspgriedgedg G USHGraph X dom I ∃! k E k = I X

Proof

Step Hyp Ref Expression
1 uspgredgiedg.e E = Edg G
2 uspgredgiedg.i I = iEdg G
3 2 uspgrf1oedg G USHGraph I : dom I 1-1 onto Edg G
4 f1of I : dom I 1-1 onto Edg G I : dom I Edg G
5 3 4 syl G USHGraph I : dom I Edg G
6 feq3 E = Edg G I : dom I E I : dom I Edg G
7 1 6 ax-mp I : dom I E I : dom I Edg G
8 5 7 sylibr G USHGraph I : dom I E
9 fdmeu I : dom I E X dom I ∃! k E I X = k
10 8 9 sylan G USHGraph X dom I ∃! k E I X = k
11 eqcom k = I X I X = k
12 11 reubii ∃! k E k = I X ∃! k E I X = k
13 10 12 sylibr G USHGraph X dom I ∃! k E k = I X