Metamath Proof Explorer


Theorem uspgrloopiedg

Description: The set of edges in a graph (simple pseudograph) with one edge which is a loop (see uspgr1v1eop ) is a singleton of a singleton. (Contributed by AV, 21-Feb-2021)

Ref Expression
Hypothesis uspgrloopvtx.g G = V A N
Assertion uspgrloopiedg V W A X iEdg G = A N

Proof

Step Hyp Ref Expression
1 uspgrloopvtx.g G = V A N
2 1 fveq2i iEdg G = iEdg V A N
3 snex A N V
4 3 a1i A X A N V
5 opiedgfv V W A N V iEdg V A N = A N
6 4 5 sylan2 V W A X iEdg V A N = A N
7 2 6 syl5eq V W A X iEdg G = A N