Metamath Proof Explorer


Theorem uspgrun

Description: The union U of two simple pseudographs G and H with the same vertex set V is a pseudograph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 16-Oct-2020)

Ref Expression
Hypotheses uspgrun.g φ G USHGraph
uspgrun.h φ H USHGraph
uspgrun.e E = iEdg G
uspgrun.f F = iEdg H
uspgrun.vg V = Vtx G
uspgrun.vh φ Vtx H = V
uspgrun.i φ dom E dom F =
uspgrun.u φ U W
uspgrun.v φ Vtx U = V
uspgrun.un φ iEdg U = E F
Assertion uspgrun φ U UPGraph

Proof

Step Hyp Ref Expression
1 uspgrun.g φ G USHGraph
2 uspgrun.h φ H USHGraph
3 uspgrun.e E = iEdg G
4 uspgrun.f F = iEdg H
5 uspgrun.vg V = Vtx G
6 uspgrun.vh φ Vtx H = V
7 uspgrun.i φ dom E dom F =
8 uspgrun.u φ U W
9 uspgrun.v φ Vtx U = V
10 uspgrun.un φ iEdg U = E F
11 uspgrupgr G USHGraph G UPGraph
12 1 11 syl φ G UPGraph
13 uspgrupgr H USHGraph H UPGraph
14 2 13 syl φ H UPGraph
15 12 14 3 4 5 6 7 8 9 10 upgrun φ U UPGraph