Metamath Proof Explorer


Theorem uspgrupgr

Description: A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 15-Oct-2020)

Ref Expression
Assertion uspgrupgr G USHGraph G UPGraph

Proof

Step Hyp Ref Expression
1 eqid Vtx G = Vtx G
2 eqid iEdg G = iEdg G
3 1 2 isuspgr G USHGraph G USHGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2
4 f1f iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2 iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
5 3 4 syl6bi G USHGraph G USHGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
6 1 2 isupgr G USHGraph G UPGraph iEdg G : dom iEdg G x 𝒫 Vtx G | x 2
7 5 6 sylibrd G USHGraph G USHGraph G UPGraph
8 7 pm2.43i G USHGraph G UPGraph