Metamath Proof Explorer


Theorem uspgrupgrushgr

Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020)

Ref Expression
Assertion uspgrupgrushgr G USHGraph G UPGraph G USHGraph

Proof

Step Hyp Ref Expression
1 uspgrupgr G USHGraph G UPGraph
2 uspgrushgr G USHGraph G USHGraph
3 1 2 jca G USHGraph G UPGraph G USHGraph
4 eqid Vtx G = Vtx G
5 eqid iEdg G = iEdg G
6 4 5 ushgrf G USHGraph iEdg G : dom iEdg G 1-1 𝒫 Vtx G
7 edgval Edg G = ran iEdg G
8 upgredgss G UPGraph Edg G x 𝒫 Vtx G | x 2
9 7 8 eqsstrrid G UPGraph ran iEdg G x 𝒫 Vtx G | x 2
10 f1ssr iEdg G : dom iEdg G 1-1 𝒫 Vtx G ran iEdg G x 𝒫 Vtx G | x 2 iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2
11 6 9 10 syl2anr G UPGraph G USHGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2
12 4 5 isuspgr G UPGraph G USHGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2
13 12 adantr G UPGraph G USHGraph G USHGraph iEdg G : dom iEdg G 1-1 x 𝒫 Vtx G | x 2
14 11 13 mpbird G UPGraph G USHGraph G USHGraph
15 3 14 impbii G USHGraph G UPGraph G USHGraph