Metamath Proof Explorer


Theorem uspreg

Description: If a uniform space is Hausdorff, it is regular. Proposition 3 of BourbakiTop1 p. II.5. (Contributed by Thierry Arnoux, 4-Jan-2018)

Ref Expression
Hypothesis uspreg.1 J = TopOpen W
Assertion uspreg W UnifSp J Haus J Reg

Proof

Step Hyp Ref Expression
1 uspreg.1 J = TopOpen W
2 eqid Base W = Base W
3 eqid UnifSt W = UnifSt W
4 2 3 1 isusp W UnifSp UnifSt W UnifOn Base W J = unifTop UnifSt W
5 4 simprbi W UnifSp J = unifTop UnifSt W
6 5 adantr W UnifSp J Haus J = unifTop UnifSt W
7 4 simplbi W UnifSp UnifSt W UnifOn Base W
8 simpr W UnifSp J Haus J Haus
9 6 8 eqeltrrd W UnifSp J Haus unifTop UnifSt W Haus
10 eqid unifTop UnifSt W = unifTop UnifSt W
11 10 utopreg UnifSt W UnifOn Base W unifTop UnifSt W Haus unifTop UnifSt W Reg
12 7 9 11 syl2an2r W UnifSp J Haus unifTop UnifSt W Reg
13 6 12 eqeltrd W UnifSp J Haus J Reg