Metamath Proof Explorer


Theorem ust0

Description: The unique uniform structure of the empty set is the empty set. Remark 3 of BourbakiTop1 p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017)

Ref Expression
Assertion ust0 UnifOn =

Proof

Step Hyp Ref Expression
1 0ex V
2 isust V u UnifOn u 𝒫 × × u v u w 𝒫 × v w w u w u v w u I v v -1 u w u w w v
3 1 2 ax-mp u UnifOn u 𝒫 × × u v u w 𝒫 × v w w u w u v w u I v v -1 u w u w w v
4 3 simp1bi u UnifOn u 𝒫 ×
5 0xp × =
6 5 pweqi 𝒫 × = 𝒫
7 pw0 𝒫 =
8 6 7 eqtri 𝒫 × =
9 4 8 sseqtrdi u UnifOn u
10 ustbasel u UnifOn × u
11 5 10 eqeltrrid u UnifOn u
12 11 snssd u UnifOn u
13 9 12 eqssd u UnifOn u =
14 velsn u u =
15 13 14 sylibr u UnifOn u
16 15 ssriv UnifOn
17 8 eqimss2i 𝒫 ×
18 1 snid
19 5 18 eqeltri ×
20 18 a1i
21 8 raleqi w 𝒫 × w w w w w
22 sseq2 w = w
23 eleq1 w = w
24 22 23 imbi12d w = w w
25 1 24 ralsn w w w
26 21 25 bitri w 𝒫 × w w
27 20 26 mpbir w 𝒫 × w w
28 inidm =
29 28 18 eqeltri
30 ineq2 w = w =
31 30 eleq1d w = w
32 1 31 ralsn w w
33 29 32 mpbir w w
34 res0 I =
35 34 eqimssi I
36 cnv0 -1 =
37 36 18 eqeltri -1
38 0trrel
39 id w = w =
40 39 39 coeq12d w = w w =
41 40 sseq1d w = w w
42 1 41 rexsn w w w
43 38 42 mpbir w w w
44 35 37 43 3pm3.2i I -1 w w w
45 sseq1 v = v w w
46 45 imbi1d v = v w w w w
47 46 ralbidv v = w 𝒫 × v w w w 𝒫 × w w
48 ineq1 v = v w = w
49 48 eleq1d v = v w w
50 49 ralbidv v = w v w w w
51 sseq2 v = I v I
52 cnveq v = v -1 = -1
53 52 eleq1d v = v -1 -1
54 sseq2 v = w w v w w
55 54 rexbidv v = w w w v w w w
56 51 53 55 3anbi123d v = I v v -1 w w w v I -1 w w w
57 47 50 56 3anbi123d v = w 𝒫 × v w w w v w I v v -1 w w w v w 𝒫 × w w w w I -1 w w w
58 1 57 ralsn v w 𝒫 × v w w w v w I v v -1 w w w v w 𝒫 × w w w w I -1 w w w
59 27 33 44 58 mpbir3an v w 𝒫 × v w w w v w I v v -1 w w w v
60 isust V UnifOn 𝒫 × × v w 𝒫 × v w w w v w I v v -1 w w w v
61 1 60 ax-mp UnifOn 𝒫 × × v w 𝒫 × v w w w v w I v v -1 w w w v
62 17 19 59 61 mpbir3an UnifOn
63 snssi UnifOn UnifOn
64 62 63 ax-mp UnifOn
65 16 64 eqssi UnifOn =