Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|
2 |
|
isust |
|
3 |
1 2
|
ax-mp |
|
4 |
3
|
simp1bi |
|
5 |
|
0xp |
|
6 |
5
|
pweqi |
|
7 |
|
pw0 |
|
8 |
6 7
|
eqtri |
|
9 |
4 8
|
sseqtrdi |
|
10 |
|
ustbasel |
|
11 |
5 10
|
eqeltrrid |
|
12 |
11
|
snssd |
|
13 |
9 12
|
eqssd |
|
14 |
|
velsn |
|
15 |
13 14
|
sylibr |
|
16 |
15
|
ssriv |
|
17 |
8
|
eqimss2i |
|
18 |
1
|
snid |
|
19 |
5 18
|
eqeltri |
|
20 |
18
|
a1i |
|
21 |
8
|
raleqi |
|
22 |
|
sseq2 |
|
23 |
|
eleq1 |
|
24 |
22 23
|
imbi12d |
|
25 |
1 24
|
ralsn |
|
26 |
21 25
|
bitri |
|
27 |
20 26
|
mpbir |
|
28 |
|
inidm |
|
29 |
28 18
|
eqeltri |
|
30 |
|
ineq2 |
|
31 |
30
|
eleq1d |
|
32 |
1 31
|
ralsn |
|
33 |
29 32
|
mpbir |
|
34 |
|
res0 |
|
35 |
34
|
eqimssi |
|
36 |
|
cnv0 |
|
37 |
36 18
|
eqeltri |
|
38 |
|
0trrel |
|
39 |
|
id |
|
40 |
39 39
|
coeq12d |
|
41 |
40
|
sseq1d |
|
42 |
1 41
|
rexsn |
|
43 |
38 42
|
mpbir |
|
44 |
35 37 43
|
3pm3.2i |
|
45 |
|
sseq1 |
|
46 |
45
|
imbi1d |
|
47 |
46
|
ralbidv |
|
48 |
|
ineq1 |
|
49 |
48
|
eleq1d |
|
50 |
49
|
ralbidv |
|
51 |
|
sseq2 |
|
52 |
|
cnveq |
|
53 |
52
|
eleq1d |
|
54 |
|
sseq2 |
|
55 |
54
|
rexbidv |
|
56 |
51 53 55
|
3anbi123d |
|
57 |
47 50 56
|
3anbi123d |
|
58 |
1 57
|
ralsn |
|
59 |
27 33 44 58
|
mpbir3an |
|
60 |
|
isust |
|
61 |
1 60
|
ax-mp |
|
62 |
17 19 59 61
|
mpbir3an |
|
63 |
|
snssi |
|
64 |
62 63
|
ax-mp |
|
65 |
16 64
|
eqssi |
|