Database
BASIC TOPOLOGY
Uniform Structures and Spaces
Uniform structures
ustbas2
Next ⟩
ustuni
Metamath Proof Explorer
Ascii
Unicode
Theorem
ustbas2
Description:
Second direction for
ustbas
.
(Contributed by
Thierry Arnoux
, 16-Nov-2017)
Ref
Expression
Assertion
ustbas2
⊢
U
∈
UnifOn
⁡
X
→
X
=
dom
⁡
⋃
U
Proof
Step
Hyp
Ref
Expression
1
dmxpid
⊢
dom
⁡
X
×
X
=
X
2
ustbasel
⊢
U
∈
UnifOn
⁡
X
→
X
×
X
∈
U
3
elssuni
⊢
X
×
X
∈
U
→
X
×
X
⊆
⋃
U
4
2
3
syl
⊢
U
∈
UnifOn
⁡
X
→
X
×
X
⊆
⋃
U
5
elfvex
⊢
U
∈
UnifOn
⁡
X
→
X
∈
V
6
isust
⊢
X
∈
V
→
U
∈
UnifOn
⁡
X
↔
U
⊆
𝒫
X
×
X
∧
X
×
X
∈
U
∧
∀
v
∈
U
∀
w
∈
𝒫
X
×
X
v
⊆
w
→
w
∈
U
∧
∀
w
∈
U
v
∩
w
∈
U
∧
I
↾
X
⊆
v
∧
v
-1
∈
U
∧
∃
w
∈
U
w
∘
w
⊆
v
7
5
6
syl
⊢
U
∈
UnifOn
⁡
X
→
U
∈
UnifOn
⁡
X
↔
U
⊆
𝒫
X
×
X
∧
X
×
X
∈
U
∧
∀
v
∈
U
∀
w
∈
𝒫
X
×
X
v
⊆
w
→
w
∈
U
∧
∀
w
∈
U
v
∩
w
∈
U
∧
I
↾
X
⊆
v
∧
v
-1
∈
U
∧
∃
w
∈
U
w
∘
w
⊆
v
8
7
ibi
⊢
U
∈
UnifOn
⁡
X
→
U
⊆
𝒫
X
×
X
∧
X
×
X
∈
U
∧
∀
v
∈
U
∀
w
∈
𝒫
X
×
X
v
⊆
w
→
w
∈
U
∧
∀
w
∈
U
v
∩
w
∈
U
∧
I
↾
X
⊆
v
∧
v
-1
∈
U
∧
∃
w
∈
U
w
∘
w
⊆
v
9
8
simp1d
⊢
U
∈
UnifOn
⁡
X
→
U
⊆
𝒫
X
×
X
10
9
unissd
⊢
U
∈
UnifOn
⁡
X
→
⋃
U
⊆
⋃
𝒫
X
×
X
11
unipw
⊢
⋃
𝒫
X
×
X
=
X
×
X
12
10
11
sseqtrdi
⊢
U
∈
UnifOn
⁡
X
→
⋃
U
⊆
X
×
X
13
4
12
eqssd
⊢
U
∈
UnifOn
⁡
X
→
X
×
X
=
⋃
U
14
13
dmeqd
⊢
U
∈
UnifOn
⁡
X
→
dom
⁡
X
×
X
=
dom
⁡
⋃
U
15
1
14
eqtr3id
⊢
U
∈
UnifOn
⁡
X
→
X
=
dom
⁡
⋃
U