Metamath Proof Explorer


Theorem ustbasel

Description: The full set is always an entourage. Condition F_IIb of BourbakiTop1 p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017)

Ref Expression
Assertion ustbasel U UnifOn X X × X U

Proof

Step Hyp Ref Expression
1 elfvex U UnifOn X X V
2 isust X V U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
3 1 2 syl U UnifOn X U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
4 3 ibi U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
5 4 simp2d U UnifOn X X × X U