Metamath Proof Explorer


Theorem ustex2sym

Description: In an uniform structure, for any entourage V , there exists a symmetrical entourage smaller than half V . (Contributed by Thierry Arnoux, 16-Jan-2018)

Ref Expression
Assertion ustex2sym U UnifOn X V U w U w -1 = w w w V

Proof

Step Hyp Ref Expression
1 ustexsym U UnifOn X v U w U w -1 = w w v
2 1 ad4ant13 U UnifOn X V U v U v v V w U w -1 = w w v
3 simprl U UnifOn X V U v U v v V w U w -1 = w w v w -1 = w
4 coss1 w v w w v w
5 coss2 w v v w v v
6 4 5 sstrd w v w w v v
7 6 ad2antll U UnifOn X V U v U v v V w U w -1 = w w v w w v v
8 simpllr U UnifOn X V U v U v v V w U w -1 = w w v v v V
9 7 8 sstrd U UnifOn X V U v U v v V w U w -1 = w w v w w V
10 3 9 jca U UnifOn X V U v U v v V w U w -1 = w w v w -1 = w w w V
11 10 ex U UnifOn X V U v U v v V w U w -1 = w w v w -1 = w w w V
12 11 reximdva U UnifOn X V U v U v v V w U w -1 = w w v w U w -1 = w w w V
13 2 12 mpd U UnifOn X V U v U v v V w U w -1 = w w w V
14 ustexhalf U UnifOn X V U v U v v V
15 13 14 r19.29a U UnifOn X V U w U w -1 = w w w V