Metamath Proof Explorer


Theorem ustex3sym

Description: In an uniform structure, for any entourage V , there exists a symmetrical entourage smaller than a third of V . (Contributed by Thierry Arnoux, 16-Jan-2018)

Ref Expression
Assertion ustex3sym U UnifOn X V U w U w -1 = w w w w V

Proof

Step Hyp Ref Expression
1 ustex2sym U UnifOn X v U w U w -1 = w w w v
2 1 ad4ant13 U UnifOn X V U v U v v V w U w -1 = w w w v
3 simprl U UnifOn X V U v U v v V w U w -1 = w w w v w -1 = w
4 simp-5l U UnifOn X V U v U v v V w U w -1 = w w w v U UnifOn X
5 simplr U UnifOn X V U v U v v V w U w -1 = w w w v w U
6 ustssco U UnifOn X w U w w w
7 4 5 6 syl2anc U UnifOn X V U v U v v V w U w -1 = w w w v w w w
8 simprr U UnifOn X V U v U v v V w U w -1 = w w w v w w v
9 coss2 w w v w w w w v
10 9 adantl w w w w w v w w w w v
11 sstr w w w w w v w v
12 coss1 w v w v v v
13 11 12 syl w w w w w v w v v v
14 10 13 sstrd w w w w w v w w w v v
15 7 8 14 syl2anc U UnifOn X V U v U v v V w U w -1 = w w w v w w w v v
16 simpllr U UnifOn X V U v U v v V w U w -1 = w w w v v v V
17 15 16 sstrd U UnifOn X V U v U v v V w U w -1 = w w w v w w w V
18 3 17 jca U UnifOn X V U v U v v V w U w -1 = w w w v w -1 = w w w w V
19 18 ex U UnifOn X V U v U v v V w U w -1 = w w w v w -1 = w w w w V
20 19 reximdva U UnifOn X V U v U v v V w U w -1 = w w w v w U w -1 = w w w w V
21 2 20 mpd U UnifOn X V U v U v v V w U w -1 = w w w w V
22 ustexhalf U UnifOn X V U v U v v V
23 21 22 r19.29a U UnifOn X V U w U w -1 = w w w w V