Metamath Proof Explorer


Theorem ustexhalf

Description: For each entourage V there is an entourage w that is "not more than half as large". Condition U_III of BourbakiTop1 p. II.1. (Contributed by Thierry Arnoux, 2-Dec-2017)

Ref Expression
Assertion ustexhalf U UnifOn X V U w U w w V

Proof

Step Hyp Ref Expression
1 elfvex U UnifOn X X V
2 isust X V U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
3 1 2 syl U UnifOn X U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
4 3 ibi U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
5 4 simp3d U UnifOn X v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
6 sseq1 v = V v w V w
7 6 imbi1d v = V v w w U V w w U
8 7 ralbidv v = V w 𝒫 X × X v w w U w 𝒫 X × X V w w U
9 ineq1 v = V v w = V w
10 9 eleq1d v = V v w U V w U
11 10 ralbidv v = V w U v w U w U V w U
12 sseq2 v = V I X v I X V
13 cnveq v = V v -1 = V -1
14 13 eleq1d v = V v -1 U V -1 U
15 sseq2 v = V w w v w w V
16 15 rexbidv v = V w U w w v w U w w V
17 12 14 16 3anbi123d v = V I X v v -1 U w U w w v I X V V -1 U w U w w V
18 8 11 17 3anbi123d v = V w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v w 𝒫 X × X V w w U w U V w U I X V V -1 U w U w w V
19 18 rspcv V U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v w 𝒫 X × X V w w U w U V w U I X V V -1 U w U w w V
20 5 19 mpan9 U UnifOn X V U w 𝒫 X × X V w w U w U V w U I X V V -1 U w U w w V
21 20 simp3d U UnifOn X V U I X V V -1 U w U w w V
22 21 simp3d U UnifOn X V U w U w w V