Metamath Proof Explorer


Theorem ustexsym

Description: In an uniform structure, for any entourage V , there exists a smaller symmetrical entourage. (Contributed by Thierry Arnoux, 4-Jan-2018)

Ref Expression
Assertion ustexsym U UnifOn X V U w U w -1 = w w V

Proof

Step Hyp Ref Expression
1 simplll U UnifOn X V U x U x x V U UnifOn X
2 ustinvel U UnifOn X x U x -1 U
3 2 ad4ant13 U UnifOn X V U x U x x V x -1 U
4 simplr U UnifOn X V U x U x x V x U
5 ustincl U UnifOn X x -1 U x U x -1 x U
6 1 3 4 5 syl3anc U UnifOn X V U x U x x V x -1 x U
7 ustrel U UnifOn X x U Rel x
8 dfrel2 Rel x x -1 -1 = x
9 7 8 sylib U UnifOn X x U x -1 -1 = x
10 9 ineq1d U UnifOn X x U x -1 -1 x -1 = x x -1
11 cnvin x -1 x -1 = x -1 -1 x -1
12 incom x -1 x = x x -1
13 10 11 12 3eqtr4g U UnifOn X x U x -1 x -1 = x -1 x
14 13 ad4ant13 U UnifOn X V U x U x x V x -1 x -1 = x -1 x
15 inss2 x -1 x x
16 ustssco U UnifOn X x U x x x
17 16 ad4ant13 U UnifOn X V U x U x x V x x x
18 simpr U UnifOn X V U x U x x V x x V
19 17 18 sstrd U UnifOn X V U x U x x V x V
20 15 19 sstrid U UnifOn X V U x U x x V x -1 x V
21 cnveq w = x -1 x w -1 = x -1 x -1
22 id w = x -1 x w = x -1 x
23 21 22 eqeq12d w = x -1 x w -1 = w x -1 x -1 = x -1 x
24 sseq1 w = x -1 x w V x -1 x V
25 23 24 anbi12d w = x -1 x w -1 = w w V x -1 x -1 = x -1 x x -1 x V
26 25 rspcev x -1 x U x -1 x -1 = x -1 x x -1 x V w U w -1 = w w V
27 6 14 20 26 syl12anc U UnifOn X V U x U x x V w U w -1 = w w V
28 ustexhalf U UnifOn X V U x U x x V
29 27 28 r19.29a U UnifOn X V U w U w -1 = w w V