Metamath Proof Explorer


Theorem ustimasn

Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 5-Dec-2017)

Ref Expression
Assertion ustimasn U UnifOn X V U P X V P X

Proof

Step Hyp Ref Expression
1 imassrn V P ran V
2 ustssxp U UnifOn X V U V X × X
3 2 3adant3 U UnifOn X V U P X V X × X
4 rnss V X × X ran V ran X × X
5 rnxpid ran X × X = X
6 4 5 sseqtrdi V X × X ran V X
7 3 6 syl U UnifOn X V U P X ran V X
8 1 7 sstrid U UnifOn X V U P X V P X