Database
BASIC TOPOLOGY
Uniform Structures and Spaces
Uniform structures
ustimasn
Next ⟩
trust
Metamath Proof Explorer
Ascii
Unicode
Theorem
ustimasn
Description:
Lemma for
ustuqtop
.
(Contributed by
Thierry Arnoux
, 5-Dec-2017)
Ref
Expression
Assertion
ustimasn
⊢
U
∈
UnifOn
⁡
X
∧
V
∈
U
∧
P
∈
X
→
V
P
⊆
X
Proof
Step
Hyp
Ref
Expression
1
imassrn
⊢
V
P
⊆
ran
⁡
V
2
ustssxp
⊢
U
∈
UnifOn
⁡
X
∧
V
∈
U
→
V
⊆
X
×
X
3
2
3adant3
⊢
U
∈
UnifOn
⁡
X
∧
V
∈
U
∧
P
∈
X
→
V
⊆
X
×
X
4
rnss
⊢
V
⊆
X
×
X
→
ran
⁡
V
⊆
ran
⁡
X
×
X
5
rnxpid
⊢
ran
⁡
X
×
X
=
X
6
4
5
sseqtrdi
⊢
V
⊆
X
×
X
→
ran
⁡
V
⊆
X
7
3
6
syl
⊢
U
∈
UnifOn
⁡
X
∧
V
∈
U
∧
P
∈
X
→
ran
⁡
V
⊆
X
8
1
7
sstrid
⊢
U
∈
UnifOn
⁡
X
∧
V
∈
U
∧
P
∈
X
→
V
P
⊆
X