Metamath Proof Explorer


Theorem ustref

Description: Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion ustref U UnifOn X V U A X A V A

Proof

Step Hyp Ref Expression
1 eqid A = A
2 resieq A X A X A I X A A = A
3 1 2 mpbiri A X A X A I X A
4 3 anidms A X A I X A
5 4 3ad2ant3 U UnifOn X V U A X A I X A
6 ustdiag U UnifOn X V U I X V
7 6 ssbrd U UnifOn X V U A I X A A V A
8 7 3adant3 U UnifOn X V U A X A I X A A V A
9 5 8 mpd U UnifOn X V U A X A V A