Metamath Proof Explorer


Theorem ustssel

Description: A uniform structure is upward closed. Condition F_I of BourbakiTop1 p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017) (Proof shortened by AV, 17-Sep-2021)

Ref Expression
Assertion ustssel U UnifOn X V U W X × X V W W U

Proof

Step Hyp Ref Expression
1 simp1 U UnifOn X V U W X × X U UnifOn X
2 1 elfvexd U UnifOn X V U W X × X X V
3 isust X V U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
4 2 3 syl U UnifOn X V U W X × X U UnifOn X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
5 1 4 mpbid U UnifOn X V U W X × X U 𝒫 X × X X × X U v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
6 5 simp3d U UnifOn X V U W X × X v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v
7 simp1 w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v w 𝒫 X × X v w w U
8 7 ralimi v U w 𝒫 X × X v w w U w U v w U I X v v -1 U w U w w v v U w 𝒫 X × X v w w U
9 6 8 syl U UnifOn X V U W X × X v U w 𝒫 X × X v w w U
10 simp2 U UnifOn X V U W X × X V U
11 2 2 xpexd U UnifOn X V U W X × X X × X V
12 simp3 U UnifOn X V U W X × X W X × X
13 11 12 sselpwd U UnifOn X V U W X × X W 𝒫 X × X
14 sseq1 v = V v w V w
15 14 imbi1d v = V v w w U V w w U
16 sseq2 w = W V w V W
17 eleq1 w = W w U W U
18 16 17 imbi12d w = W V w w U V W W U
19 15 18 rspc2v V U W 𝒫 X × X v U w 𝒫 X × X v w w U V W W U
20 10 13 19 syl2anc U UnifOn X V U W X × X v U w 𝒫 X × X v w w U V W W U
21 9 20 mpd U UnifOn X V U W X × X V W W U