Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | utopustuq.1 | |
|
Assertion | ustuqtop0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | utopustuq.1 | |
|
2 | ustimasn | |
|
3 | 2 | 3expa | |
4 | 3 | an32s | |
5 | vex | |
|
6 | 5 | imaex | |
7 | 6 | elpw | |
8 | 4 7 | sylibr | |
9 | 8 | ralrimiva | |
10 | eqid | |
|
11 | 10 | rnmptss | |
12 | 9 11 | syl | |
13 | mptexg | |
|
14 | rnexg | |
|
15 | elpwg | |
|
16 | 13 14 15 | 3syl | |
17 | 16 | adantr | |
18 | 12 17 | mpbird | |
19 | 18 1 | fmptd | |