Metamath Proof Explorer


Theorem ustuqtop5

Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)

Ref Expression
Hypothesis utopustuq.1 N = p X ran v U v p
Assertion ustuqtop5 U UnifOn X p X X N p

Proof

Step Hyp Ref Expression
1 utopustuq.1 N = p X ran v U v p
2 ustbasel U UnifOn X X × X U
3 snssi p X p X
4 dfss p X p = p X
5 3 4 sylib p X p = p X
6 incom p X = X p
7 5 6 eqtr2di p X X p = p
8 snnzg p X p
9 7 8 eqnetrd p X X p
10 9 adantl U UnifOn X p X X p
11 xpima2 X p X × X p = X
12 10 11 syl U UnifOn X p X X × X p = X
13 12 eqcomd U UnifOn X p X X = X × X p
14 imaeq1 w = X × X w p = X × X p
15 14 rspceeqv X × X U X = X × X p w U X = w p
16 2 13 15 syl2an2r U UnifOn X p X w U X = w p
17 elfvex U UnifOn X X V
18 1 ustuqtoplem U UnifOn X p X X V X N p w U X = w p
19 17 18 mpidan U UnifOn X p X X N p w U X = w p
20 16 19 mpbird U UnifOn X p X X N p