Metamath Proof Explorer


Theorem ustuqtoplem

Description: Lemma for ustuqtop . (Contributed by Thierry Arnoux, 11-Jan-2018)

Ref Expression
Hypothesis utopustuq.1 N = p X ran v U v p
Assertion ustuqtoplem U UnifOn X P X A V A N P w U A = w P

Proof

Step Hyp Ref Expression
1 utopustuq.1 N = p X ran v U v p
2 simpl p = q v U p = q
3 2 sneqd p = q v U p = q
4 3 imaeq2d p = q v U v p = v q
5 4 mpteq2dva p = q v U v p = v U v q
6 5 rneqd p = q ran v U v p = ran v U v q
7 6 cbvmptv p X ran v U v p = q X ran v U v q
8 1 7 eqtri N = q X ran v U v q
9 simpr2 U UnifOn X P X q = P v U q = P
10 9 sneqd U UnifOn X P X q = P v U q = P
11 10 imaeq2d U UnifOn X P X q = P v U v q = v P
12 11 3anassrs U UnifOn X P X q = P v U v q = v P
13 12 mpteq2dva U UnifOn X P X q = P v U v q = v U v P
14 13 rneqd U UnifOn X P X q = P ran v U v q = ran v U v P
15 simpr U UnifOn X P X P X
16 mptexg U UnifOn X v U v P V
17 rnexg v U v P V ran v U v P V
18 16 17 syl U UnifOn X ran v U v P V
19 18 adantr U UnifOn X P X ran v U v P V
20 8 14 15 19 fvmptd2 U UnifOn X P X N P = ran v U v P
21 20 eleq2d U UnifOn X P X A N P A ran v U v P
22 imaeq1 v = w v P = w P
23 22 cbvmptv v U v P = w U w P
24 23 elrnmpt A V A ran v U v P w U A = w P
25 21 24 sylan9bb U UnifOn X P X A V A N P w U A = w P