Metamath Proof Explorer


Theorem ustval

Description: The class of all uniform structures for a base X . (Contributed by Thierry Arnoux, 15-Nov-2017) (Revised by AV, 17-Sep-2021)

Ref Expression
Assertion ustval X V UnifOn X = u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v

Proof

Step Hyp Ref Expression
1 df-ust UnifOn = x V u | u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v
2 id x = X x = X
3 2 sqxpeqd x = X x × x = X × X
4 3 pweqd x = X 𝒫 x × x = 𝒫 X × X
5 4 sseq2d x = X u 𝒫 x × x u 𝒫 X × X
6 3 eleq1d x = X x × x u X × X u
7 4 raleqdv x = X w 𝒫 x × x v w w u w 𝒫 X × X v w w u
8 reseq2 x = X I x = I X
9 8 sseq1d x = X I x v I X v
10 9 3anbi1d x = X I x v v -1 u w u w w v I X v v -1 u w u w w v
11 7 10 3anbi13d x = X w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v
12 11 ralbidv x = X v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v
13 5 6 12 3anbi123d x = X u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v
14 13 abbidv x = X u | u 𝒫 x × x x × x u v u w 𝒫 x × x v w w u w u v w u I x v v -1 u w u w w v = u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v
15 elex X V X V
16 simp1 u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v u 𝒫 X × X
17 16 ss2abi u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v u | u 𝒫 X × X
18 df-pw 𝒫 𝒫 X × X = u | u 𝒫 X × X
19 17 18 sseqtrri u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v 𝒫 𝒫 X × X
20 sqxpexg X V X × X V
21 pwexg X × X V 𝒫 X × X V
22 pwexg 𝒫 X × X V 𝒫 𝒫 X × X V
23 20 21 22 3syl X V 𝒫 𝒫 X × X V
24 ssexg u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v 𝒫 𝒫 X × X 𝒫 𝒫 X × X V u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v V
25 19 23 24 sylancr X V u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v V
26 1 14 15 25 fvmptd3 X V UnifOn X = u | u 𝒫 X × X X × X u v u w 𝒫 X × X v w w u w u v w u I X v v -1 u w u w w v