Metamath Proof Explorer


Theorem utopsnnei

Description: Images of singletons by entourages V are neighborhoods of those singletons. (Contributed by Thierry Arnoux, 13-Jan-2018)

Ref Expression
Hypothesis utoptop.1 J = unifTop U
Assertion utopsnnei U UnifOn X V U P X V P nei J P

Proof

Step Hyp Ref Expression
1 utoptop.1 J = unifTop U
2 eqid V P = V P
3 imaeq1 v = V v P = V P
4 3 rspceeqv V U V P = V P v U V P = v P
5 2 4 mpan2 V U v U V P = v P
6 5 3ad2ant2 U UnifOn X V U P X v U V P = v P
7 1 utopsnneip U UnifOn X P X nei J P = ran v U v P
8 7 3adant2 U UnifOn X V U P X nei J P = ran v U v P
9 8 eleq2d U UnifOn X V U P X V P nei J P V P ran v U v P
10 imaexg V U V P V
11 eqid v U v P = v U v P
12 11 elrnmpt V P V V P ran v U v P v U V P = v P
13 10 12 syl V U V P ran v U v P v U V P = v P
14 13 3ad2ant2 U UnifOn X V U P X V P ran v U v P v U V P = v P
15 9 14 bitrd U UnifOn X V U P X V P nei J P v U V P = v P
16 6 15 mpbird U UnifOn X V U P X V P nei J P