Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
|
utopval |
|
3 |
|
ssrab2 |
|
4 |
2 3
|
eqsstrdi |
|
5 |
4
|
adantr |
|
6 |
1 5
|
sstrd |
|
7 |
|
sspwuni |
|
8 |
6 7
|
sylib |
|
9 |
|
simp-4l |
|
10 |
|
simp-4r |
|
11 |
|
simplr |
|
12 |
10 11
|
sseldd |
|
13 |
|
simpr |
|
14 |
|
elutop |
|
15 |
14
|
biimpa |
|
16 |
15
|
simprd |
|
17 |
16
|
r19.21bi |
|
18 |
9 12 13 17
|
syl21anc |
|
19 |
|
r19.41v |
|
20 |
|
ssuni |
|
21 |
20
|
reximi |
|
22 |
19 21
|
sylbir |
|
23 |
18 11 22
|
syl2anc |
|
24 |
|
eluni2 |
|
25 |
24
|
biimpi |
|
26 |
25
|
adantl |
|
27 |
23 26
|
r19.29a |
|
28 |
27
|
ralrimiva |
|
29 |
|
elutop |
|
30 |
29
|
adantr |
|
31 |
8 28 30
|
mpbir2and |
|
32 |
31
|
ex |
|
33 |
32
|
alrimiv |
|
34 |
|
elutop |
|
35 |
34
|
biimpa |
|
36 |
35
|
simpld |
|
37 |
36
|
adantrr |
|
38 |
|
ssinss1 |
|
39 |
37 38
|
syl |
|
40 |
|
simpl |
|
41 |
|
simpr31 |
|
42 |
|
simpr32 |
|
43 |
|
ustincl |
|
44 |
40 41 42 43
|
syl3anc |
|
45 |
|
inss1 |
|
46 |
|
imass1 |
|
47 |
45 46
|
ax-mp |
|
48 |
|
simpr33 |
|
49 |
48
|
simpld |
|
50 |
47 49
|
sstrid |
|
51 |
|
inss2 |
|
52 |
|
imass1 |
|
53 |
51 52
|
ax-mp |
|
54 |
48
|
simprd |
|
55 |
53 54
|
sstrid |
|
56 |
50 55
|
ssind |
|
57 |
|
imaeq1 |
|
58 |
57
|
sseq1d |
|
59 |
58
|
rspcev |
|
60 |
44 56 59
|
syl2anc |
|
61 |
60
|
3anassrs |
|
62 |
61
|
3anassrs |
|
63 |
|
simpll |
|
64 |
|
simplrl |
|
65 |
|
simpr |
|
66 |
|
elin |
|
67 |
65 66
|
sylib |
|
68 |
67
|
simpld |
|
69 |
35
|
simprd |
|
70 |
69
|
r19.21bi |
|
71 |
63 64 68 70
|
syl21anc |
|
72 |
|
simplrr |
|
73 |
67
|
simprd |
|
74 |
63 72 73 17
|
syl21anc |
|
75 |
|
reeanv |
|
76 |
71 74 75
|
sylanbrc |
|
77 |
62 76
|
r19.29vva |
|
78 |
77
|
ralrimiva |
|
79 |
|
elutop |
|
80 |
79
|
adantr |
|
81 |
39 78 80
|
mpbir2and |
|
82 |
81
|
ralrimivva |
|
83 |
|
fvex |
|
84 |
|
istopg |
|
85 |
83 84
|
ax-mp |
|
86 |
33 82 85
|
sylanbrc |
|