Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Virtual Deduction Theorems
uun0.1
Metamath Proof Explorer
Description: Convention notation form of un0.1 . (Contributed by Alan Sare , 23-Apr-2015) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
uun0.1.1
⊢ ⊤ → φ
uun0.1.2
⊢ ψ → χ
uun0.1.3
⊢ ⊤ ∧ ψ → θ
Assertion
uun0.1
⊢ ψ → θ
Proof
Step
Hyp
Ref
Expression
1
uun0.1.1
⊢ ⊤ → φ
2
uun0.1.2
⊢ ψ → χ
3
uun0.1.3
⊢ ⊤ ∧ ψ → θ
4
tru
⊢ ⊤
5
1 2
pm3.2i
⊢ ⊤ → φ ∧ ψ → χ
6
5 3
pm3.2i
⊢ ⊤ → φ ∧ ψ → χ ∧ ⊤ ∧ ψ → θ
7
6
simpri
⊢ ⊤ ∧ ψ → θ
8
7
ex
⊢ ⊤ → ψ → θ
9
4 8
ax-mp
⊢ ψ → θ