Metamath Proof Explorer


Theorem uun0.1

Description: Convention notation form of un0.1 . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses uun0.1.1 φ
uun0.1.2 ψ χ
uun0.1.3 ψ θ
Assertion uun0.1 ψ θ

Proof

Step Hyp Ref Expression
1 uun0.1.1 φ
2 uun0.1.2 ψ χ
3 uun0.1.3 ψ θ
4 tru
5 1 2 pm3.2i φ ψ χ
6 5 3 pm3.2i φ ψ χ ψ θ
7 6 simpri ψ θ
8 7 ex ψ θ
9 4 8 ax-mp ψ θ