Metamath Proof Explorer


Theorem uun121

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun121.1 φ φ ψ χ
Assertion uun121 φ ψ χ

Proof

Step Hyp Ref Expression
1 uun121.1 φ φ ψ χ
2 anabs5 φ φ ψ φ ψ
3 2 1 sylbir φ ψ χ