Metamath Proof Explorer


Theorem uun121p1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun121p1.1 φ ψ φ χ
Assertion uun121p1 φ ψ χ

Proof

Step Hyp Ref Expression
1 uun121p1.1 φ ψ φ χ
2 anabs1 φ ψ φ φ ψ
3 2 1 sylbir φ ψ χ