Metamath Proof Explorer


Theorem uun123

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun123.1 φ χ ψ θ
Assertion uun123 φ ψ χ θ

Proof

Step Hyp Ref Expression
1 uun123.1 φ χ ψ θ
2 3ancomb φ χ ψ φ ψ χ
3 2 1 sylbir φ ψ χ θ