Metamath Proof Explorer


Theorem uun2131p1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun2131p1.1 φ χ φ ψ θ
Assertion uun2131p1 φ ψ χ θ

Proof

Step Hyp Ref Expression
1 uun2131p1.1 φ χ φ ψ θ
2 ancom φ ψ φ χ φ χ φ ψ
3 2 1 sylbi φ ψ φ χ θ
4 3 3impdi φ ψ χ θ