Metamath Proof Explorer


Theorem uunT1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 3-Dec-2015) Proof was revised to accommodate a possible future version of df-tru . (Revised by David A. Wheeler, 8-May-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT1.1 φ ψ
Assertion uunT1 φ ψ

Proof

Step Hyp Ref Expression
1 uunT1.1 φ ψ
2 orc φ φ ¬ φ
3 tru
4 biid φ φ
5 3 4 2th φ φ
6 exmid φ ¬ φ
7 6 a1i φ φ φ ¬ φ
8 biidd φ ¬ φ φ φ
9 7 8 impbii φ φ φ ¬ φ
10 5 9 bitri φ ¬ φ
11 2 10 sylibr φ
12 11 1 mpancom φ ψ