Metamath Proof Explorer


Theorem uunT11

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT11.1 φ φ ψ
Assertion uunT11 φ ψ

Proof

Step Hyp Ref Expression
1 uunT11.1 φ φ ψ
2 3anass φ φ φ φ
3 truan φ φ φ φ
4 anidm φ φ φ
5 2 3 4 3bitri φ φ φ
6 5 1 sylbir φ ψ