Metamath Proof Explorer


Theorem uunT12

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT12.1 φ ψ χ
Assertion uunT12 φ ψ χ

Proof

Step Hyp Ref Expression
1 uunT12.1 φ ψ χ
2 3anass φ ψ φ ψ
3 truan φ ψ φ ψ
4 2 3 bitri φ ψ φ ψ
5 4 1 sylbir φ ψ χ