Metamath Proof Explorer


Theorem uunT12p1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT12p1.1 ψ φ χ
Assertion uunT12p1 φ ψ χ

Proof

Step Hyp Ref Expression
1 uunT12p1.1 ψ φ χ
2 3anass ψ φ ψ φ
3 truan ψ φ ψ φ
4 2 3 bitri ψ φ ψ φ
5 ancom φ ψ ψ φ
6 4 5 bitr4i ψ φ φ ψ
7 6 1 sylbir φ ψ χ