Metamath Proof Explorer


Theorem uunT12p2

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT12p2.1 φ ψ χ
Assertion uunT12p2 φ ψ χ

Proof

Step Hyp Ref Expression
1 uunT12p2.1 φ ψ χ
2 3anrot φ ψ ψ φ
3 3anass ψ φ ψ φ
4 2 3 bitri φ ψ ψ φ
5 truan ψ φ ψ φ
6 4 5 bitri φ ψ ψ φ
7 ancom φ ψ ψ φ
8 6 7 bitr4i φ ψ φ ψ
9 8 1 sylbir φ ψ χ