Metamath Proof Explorer


Theorem uunT12p3

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT12p3.1 ψ φ χ
Assertion uunT12p3 φ ψ χ

Proof

Step Hyp Ref Expression
1 uunT12p3.1 ψ φ χ
2 3ancoma ψ φ ψ φ
3 3anass ψ φ ψ φ
4 2 3 bitri ψ φ ψ φ
5 truan ψ φ ψ φ
6 4 5 bitri ψ φ ψ φ
7 ancom φ ψ ψ φ
8 6 7 bitr4i ψ φ φ ψ
9 8 1 sylbir φ ψ χ