Metamath Proof Explorer


Theorem uunT12p4

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT12p4.1 φ ψ χ
Assertion uunT12p4 φ ψ χ

Proof

Step Hyp Ref Expression
1 uunT12p4.1 φ ψ χ
2 3anrot φ ψ φ ψ
3 3anass φ ψ φ ψ
4 2 3 bitr3i φ ψ φ ψ
5 truan φ ψ φ ψ
6 4 5 bitri φ ψ φ ψ
7 6 1 sylbir φ ψ χ