Metamath Proof Explorer


Theorem uunT12p5

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT12p5.1 ψ φ χ
Assertion uunT12p5 φ ψ χ

Proof

Step Hyp Ref Expression
1 uunT12p5.1 ψ φ χ
2 3anrev ψ φ φ ψ
3 3anass φ ψ φ ψ
4 2 3 bitri ψ φ φ ψ
5 truan φ ψ φ ψ
6 4 5 bitri ψ φ φ ψ
7 6 1 sylbir φ ψ χ