Metamath Proof Explorer


Theorem uunT1p1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunT1p1.1 φ ψ
Assertion uunT1p1 φ ψ

Proof

Step Hyp Ref Expression
1 uunT1p1.1 φ ψ
2 ancom φ φ
3 truan φ φ
4 2 3 bitri φ φ
5 4 1 sylbir φ ψ