Metamath Proof Explorer


Theorem uunTT1p2

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uunTT1p2.1 φ ψ
Assertion uunTT1p2 φ ψ

Proof

Step Hyp Ref Expression
1 uunTT1p2.1 φ ψ
2 3anrot φ φ
3 3anass φ φ
4 anabs5 φ φ
5 2 3 4 3bitri φ φ
6 truan φ φ
7 5 6 bitri φ φ
8 7 1 sylbir φ ψ