Metamath Proof Explorer


Theorem uvcf1

Description: In a nonzero ring, each unit vector is different. (Contributed by Stefan O'Rear, 7-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses uvcff.u U = R unitVec I
uvcff.y Y = R freeLMod I
uvcff.b B = Base Y
Assertion uvcf1 R NzRing I W U : I 1-1 B

Proof

Step Hyp Ref Expression
1 uvcff.u U = R unitVec I
2 uvcff.y Y = R freeLMod I
3 uvcff.b B = Base Y
4 nzrring R NzRing R Ring
5 1 2 3 uvcff R Ring I W U : I B
6 4 5 sylan R NzRing I W U : I B
7 eqid 1 R = 1 R
8 eqid 0 R = 0 R
9 7 8 nzrnz R NzRing 1 R 0 R
10 9 ad3antrrr R NzRing I W i I j I i j 1 R 0 R
11 4 ad3antrrr R NzRing I W i I j I i j R Ring
12 simpllr R NzRing I W i I j I i j I W
13 simplrl R NzRing I W i I j I i j i I
14 1 11 12 13 7 uvcvv1 R NzRing I W i I j I i j U i i = 1 R
15 simplrr R NzRing I W i I j I i j j I
16 simpr R NzRing I W i I j I i j i j
17 16 necomd R NzRing I W i I j I i j j i
18 1 11 12 15 13 17 8 uvcvv0 R NzRing I W i I j I i j U j i = 0 R
19 10 14 18 3netr4d R NzRing I W i I j I i j U i i U j i
20 fveq1 U i = U j U i i = U j i
21 20 necon3i U i i U j i U i U j
22 19 21 syl R NzRing I W i I j I i j U i U j
23 22 ex R NzRing I W i I j I i j U i U j
24 23 necon4d R NzRing I W i I j I U i = U j i = j
25 24 ralrimivva R NzRing I W i I j I U i = U j i = j
26 dff13 U : I 1-1 B U : I B i I j I U i = U j i = j
27 6 25 26 sylanbrc R NzRing I W U : I 1-1 B