Metamath Proof Explorer


Theorem uvcff

Description: Domain and range of the unit vector generator; ring condition required to be sure 1 and 0 are actually in the ring. (Contributed by Stefan O'Rear, 1-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses uvcff.u U = R unitVec I
uvcff.y Y = R freeLMod I
uvcff.b B = Base Y
Assertion uvcff R Ring I W U : I B

Proof

Step Hyp Ref Expression
1 uvcff.u U = R unitVec I
2 uvcff.y Y = R freeLMod I
3 uvcff.b B = Base Y
4 eqid 1 R = 1 R
5 eqid 0 R = 0 R
6 1 4 5 uvcfval R Ring I W U = i I j I if j = i 1 R 0 R
7 eqid Base R = Base R
8 7 4 ringidcl R Ring 1 R Base R
9 7 5 ring0cl R Ring 0 R Base R
10 8 9 ifcld R Ring if j = i 1 R 0 R Base R
11 10 ad3antrrr R Ring I W i I j I if j = i 1 R 0 R Base R
12 11 fmpttd R Ring I W i I j I if j = i 1 R 0 R : I Base R
13 fvex Base R V
14 elmapg Base R V I W j I if j = i 1 R 0 R Base R I j I if j = i 1 R 0 R : I Base R
15 13 14 mpan I W j I if j = i 1 R 0 R Base R I j I if j = i 1 R 0 R : I Base R
16 15 ad2antlr R Ring I W i I j I if j = i 1 R 0 R Base R I j I if j = i 1 R 0 R : I Base R
17 12 16 mpbird R Ring I W i I j I if j = i 1 R 0 R Base R I
18 mptexg I W j I if j = i 1 R 0 R V
19 18 ad2antlr R Ring I W i I j I if j = i 1 R 0 R V
20 funmpt Fun j I if j = i 1 R 0 R
21 20 a1i R Ring I W i I Fun j I if j = i 1 R 0 R
22 fvex 0 R V
23 22 a1i R Ring I W i I 0 R V
24 snfi i Fin
25 24 a1i R Ring I W i I i Fin
26 eldifsni j I i j i
27 26 adantl R Ring I W i I j I i j i
28 27 neneqd R Ring I W i I j I i ¬ j = i
29 28 iffalsed R Ring I W i I j I i if j = i 1 R 0 R = 0 R
30 simplr R Ring I W i I I W
31 29 30 suppss2 R Ring I W i I j I if j = i 1 R 0 R supp 0 R i
32 suppssfifsupp j I if j = i 1 R 0 R V Fun j I if j = i 1 R 0 R 0 R V i Fin j I if j = i 1 R 0 R supp 0 R i finSupp 0 R j I if j = i 1 R 0 R
33 19 21 23 25 31 32 syl32anc R Ring I W i I finSupp 0 R j I if j = i 1 R 0 R
34 2 7 5 3 frlmelbas R Ring I W j I if j = i 1 R 0 R B j I if j = i 1 R 0 R Base R I finSupp 0 R j I if j = i 1 R 0 R
35 34 adantr R Ring I W i I j I if j = i 1 R 0 R B j I if j = i 1 R 0 R Base R I finSupp 0 R j I if j = i 1 R 0 R
36 17 33 35 mpbir2and R Ring I W i I j I if j = i 1 R 0 R B
37 6 36 fmpt3d R Ring I W U : I B