Metamath Proof Explorer


Theorem uvcresum

Description: Any element of a free module can be expressed as a finite linear combination of unit vectors. (Contributed by Stefan O'Rear, 3-Feb-2015) (Proof shortened by Mario Carneiro, 5-Jul-2015)

Ref Expression
Hypotheses uvcresum.u U = R unitVec I
uvcresum.y Y = R freeLMod I
uvcresum.b B = Base Y
uvcresum.v · ˙ = Y
Assertion uvcresum R Ring I W X B X = Y X · ˙ f U

Proof

Step Hyp Ref Expression
1 uvcresum.u U = R unitVec I
2 uvcresum.y Y = R freeLMod I
3 uvcresum.b B = Base Y
4 uvcresum.v · ˙ = Y
5 eqid Base R = Base R
6 2 5 3 frlmbasf I W X B X : I Base R
7 6 3adant1 R Ring I W X B X : I Base R
8 7 feqmptd R Ring I W X B X = a I X a
9 eqid 0 R = 0 R
10 simpl1 R Ring I W X B a I R Ring
11 ringmnd R Ring R Mnd
12 10 11 syl R Ring I W X B a I R Mnd
13 simpl2 R Ring I W X B a I I W
14 simpr R Ring I W X B a I a I
15 simpl2 R Ring I W X B b I I W
16 7 ffvelrnda R Ring I W X B b I X b Base R
17 1 2 3 uvcff R Ring I W U : I B
18 17 3adant3 R Ring I W X B U : I B
19 18 ffvelrnda R Ring I W X B b I U b B
20 eqid R = R
21 2 3 5 15 16 19 4 20 frlmvscafval R Ring I W X B b I X b · ˙ U b = I × X b R f U b
22 16 adantr R Ring I W X B b I a I X b Base R
23 2 5 3 frlmbasf I W U b B U b : I Base R
24 15 19 23 syl2anc R Ring I W X B b I U b : I Base R
25 24 ffvelrnda R Ring I W X B b I a I U b a Base R
26 fconstmpt I × X b = a I X b
27 26 a1i R Ring I W X B b I I × X b = a I X b
28 24 feqmptd R Ring I W X B b I U b = a I U b a
29 15 22 25 27 28 offval2 R Ring I W X B b I I × X b R f U b = a I X b R U b a
30 21 29 eqtrd R Ring I W X B b I X b · ˙ U b = a I X b R U b a
31 2 frlmlmod R Ring I W Y LMod
32 31 3adant3 R Ring I W X B Y LMod
33 32 adantr R Ring I W X B b I Y LMod
34 2 frlmsca R Ring I W R = Scalar Y
35 34 3adant3 R Ring I W X B R = Scalar Y
36 35 fveq2d R Ring I W X B Base R = Base Scalar Y
37 36 adantr R Ring I W X B b I Base R = Base Scalar Y
38 16 37 eleqtrd R Ring I W X B b I X b Base Scalar Y
39 eqid Scalar Y = Scalar Y
40 eqid Base Scalar Y = Base Scalar Y
41 3 39 4 40 lmodvscl Y LMod X b Base Scalar Y U b B X b · ˙ U b B
42 33 38 19 41 syl3anc R Ring I W X B b I X b · ˙ U b B
43 30 42 eqeltrrd R Ring I W X B b I a I X b R U b a B
44 2 5 3 frlmbasf I W a I X b R U b a B a I X b R U b a : I Base R
45 15 43 44 syl2anc R Ring I W X B b I a I X b R U b a : I Base R
46 45 fvmptelrn R Ring I W X B b I a I X b R U b a Base R
47 46 an32s R Ring I W X B a I b I X b R U b a Base R
48 47 fmpttd R Ring I W X B a I b I X b R U b a : I Base R
49 10 3ad2ant1 R Ring I W X B a I b I b a R Ring
50 13 3ad2ant1 R Ring I W X B a I b I b a I W
51 simp2 R Ring I W X B a I b I b a b I
52 14 3ad2ant1 R Ring I W X B a I b I b a a I
53 simp3 R Ring I W X B a I b I b a b a
54 1 49 50 51 52 53 9 uvcvv0 R Ring I W X B a I b I b a U b a = 0 R
55 54 oveq2d R Ring I W X B a I b I b a X b R U b a = X b R 0 R
56 16 adantlr R Ring I W X B a I b I X b Base R
57 56 3adant3 R Ring I W X B a I b I b a X b Base R
58 5 20 9 ringrz R Ring X b Base R X b R 0 R = 0 R
59 49 57 58 syl2anc R Ring I W X B a I b I b a X b R 0 R = 0 R
60 55 59 eqtrd R Ring I W X B a I b I b a X b R U b a = 0 R
61 60 13 suppsssn R Ring I W X B a I b I X b R U b a supp 0 R a
62 5 9 12 13 14 48 61 gsumpt R Ring I W X B a I R b I X b R U b a = b I X b R U b a a
63 fveq2 b = a X b = X a
64 fveq2 b = a U b = U a
65 64 fveq1d b = a U b a = U a a
66 63 65 oveq12d b = a X b R U b a = X a R U a a
67 eqid b I X b R U b a = b I X b R U b a
68 ovex X a R U a a V
69 66 67 68 fvmpt a I b I X b R U b a a = X a R U a a
70 69 adantl R Ring I W X B a I b I X b R U b a a = X a R U a a
71 eqid 1 R = 1 R
72 1 10 13 14 71 uvcvv1 R Ring I W X B a I U a a = 1 R
73 72 oveq2d R Ring I W X B a I X a R U a a = X a R 1 R
74 7 ffvelrnda R Ring I W X B a I X a Base R
75 5 20 71 ringridm R Ring X a Base R X a R 1 R = X a
76 10 74 75 syl2anc R Ring I W X B a I X a R 1 R = X a
77 73 76 eqtrd R Ring I W X B a I X a R U a a = X a
78 70 77 eqtrd R Ring I W X B a I b I X b R U b a a = X a
79 62 78 eqtrd R Ring I W X B a I R b I X b R U b a = X a
80 79 mpteq2dva R Ring I W X B a I R b I X b R U b a = a I X a
81 8 80 eqtr4d R Ring I W X B X = a I R b I X b R U b a
82 eqid 0 Y = 0 Y
83 simp2 R Ring I W X B I W
84 simp1 R Ring I W X B R Ring
85 mptexg I W b I a I X b R U b a V
86 85 3ad2ant2 R Ring I W X B b I a I X b R U b a V
87 funmpt Fun b I a I X b R U b a
88 87 a1i R Ring I W X B Fun b I a I X b R U b a
89 fvexd R Ring I W X B 0 Y V
90 2 9 3 frlmbasfsupp I W X B finSupp 0 R X
91 90 3adant1 R Ring I W X B finSupp 0 R X
92 91 fsuppimpd R Ring I W X B X supp 0 R Fin
93 35 eqcomd R Ring I W X B Scalar Y = R
94 93 fveq2d R Ring I W X B 0 Scalar Y = 0 R
95 94 oveq2d R Ring I W X B X supp 0 Scalar Y = X supp 0 R
96 ssid X supp 0 R X supp 0 R
97 95 96 eqsstrdi R Ring I W X B X supp 0 Scalar Y X supp 0 R
98 fvexd R Ring I W X B 0 Scalar Y V
99 7 97 83 98 suppssr R Ring I W X B b I supp 0 R X X b = 0 Scalar Y
100 99 oveq1d R Ring I W X B b I supp 0 R X X b · ˙ U b = 0 Scalar Y · ˙ U b
101 eldifi b I supp 0 R X b I
102 101 30 sylan2 R Ring I W X B b I supp 0 R X X b · ˙ U b = a I X b R U b a
103 32 adantr R Ring I W X B b I supp 0 R X Y LMod
104 101 19 sylan2 R Ring I W X B b I supp 0 R X U b B
105 eqid 0 Scalar Y = 0 Scalar Y
106 3 39 4 105 82 lmod0vs Y LMod U b B 0 Scalar Y · ˙ U b = 0 Y
107 103 104 106 syl2anc R Ring I W X B b I supp 0 R X 0 Scalar Y · ˙ U b = 0 Y
108 100 102 107 3eqtr3d R Ring I W X B b I supp 0 R X a I X b R U b a = 0 Y
109 108 83 suppss2 R Ring I W X B b I a I X b R U b a supp 0 Y X supp 0 R
110 suppssfifsupp b I a I X b R U b a V Fun b I a I X b R U b a 0 Y V X supp 0 R Fin b I a I X b R U b a supp 0 Y X supp 0 R finSupp 0 Y b I a I X b R U b a
111 86 88 89 92 109 110 syl32anc R Ring I W X B finSupp 0 Y b I a I X b R U b a
112 2 3 82 83 83 84 43 111 frlmgsum R Ring I W X B Y b I a I X b R U b a = a I R b I X b R U b a
113 81 112 eqtr4d R Ring I W X B X = Y b I a I X b R U b a
114 7 feqmptd R Ring I W X B X = b I X b
115 18 feqmptd R Ring I W X B U = b I U b
116 83 16 19 114 115 offval2 R Ring I W X B X · ˙ f U = b I X b · ˙ U b
117 30 mpteq2dva R Ring I W X B b I X b · ˙ U b = b I a I X b R U b a
118 116 117 eqtrd R Ring I W X B X · ˙ f U = b I a I X b R U b a
119 118 oveq2d R Ring I W X B Y X · ˙ f U = Y b I a I X b R U b a
120 113 119 eqtr4d R Ring I W X B X = Y X · ˙ f U