Metamath Proof Explorer


Theorem uvcvv0

Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcvv.u U = R unitVec I
uvcvv.r φ R V
uvcvv.i φ I W
uvcvv.j φ J I
uvcvv0.k φ K I
uvcvv0.jk φ J K
uvcvv0.z 0 ˙ = 0 R
Assertion uvcvv0 φ U J K = 0 ˙

Proof

Step Hyp Ref Expression
1 uvcvv.u U = R unitVec I
2 uvcvv.r φ R V
3 uvcvv.i φ I W
4 uvcvv.j φ J I
5 uvcvv0.k φ K I
6 uvcvv0.jk φ J K
7 uvcvv0.z 0 ˙ = 0 R
8 eqid 1 R = 1 R
9 1 8 7 uvcvval R V I W J I K I U J K = if K = J 1 R 0 ˙
10 2 3 4 5 9 syl31anc φ U J K = if K = J 1 R 0 ˙
11 nesym J K ¬ K = J
12 6 11 sylib φ ¬ K = J
13 12 iffalsed φ if K = J 1 R 0 ˙ = 0 ˙
14 10 13 eqtrd φ U J K = 0 ˙