Metamath Proof Explorer


Theorem uvcvv1

Description: The unit vector is one at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcvv.u U = R unitVec I
uvcvv.r φ R V
uvcvv.i φ I W
uvcvv.j φ J I
uvcvv1.o 1 ˙ = 1 R
Assertion uvcvv1 φ U J J = 1 ˙

Proof

Step Hyp Ref Expression
1 uvcvv.u U = R unitVec I
2 uvcvv.r φ R V
3 uvcvv.i φ I W
4 uvcvv.j φ J I
5 uvcvv1.o 1 ˙ = 1 R
6 eqid 0 R = 0 R
7 1 5 6 uvcvval R V I W J I J I U J J = if J = J 1 ˙ 0 R
8 2 3 4 4 7 syl31anc φ U J J = if J = J 1 ˙ 0 R
9 eqid J = J
10 iftrue J = J if J = J 1 ˙ 0 R = 1 ˙
11 9 10 mp1i φ if J = J 1 ˙ 0 R = 1 ˙
12 8 11 eqtrd φ U J J = 1 ˙